Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Acc Chem Res ; 56(12): 1458-1468, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-20234847

ABSTRACT

Native mass spectrometry is nowadays widely used for determining the mass of intact proteins and their noncovalent biomolecular assemblies. While this technology performs well in the mass determination of monodisperse protein assemblies, more real-life heterogeneous protein complexes can pose a significant challenge. Factors such as co-occurring stoichiometries, subcomplexes, and/or post-translational modifications, may especially hamper mass analysis by obfuscating the charge state inferencing that is fundamental to the technique. Moreover, these mass analyses typically require measurement of several million molecules to generate an analyzable mass spectrum, limiting its sensitivity. In 2012, we introduced an Orbitrap-based mass analyzer with extended mass range (EMR) and demonstrated that it could be used to obtain not only high-resolution mass spectra of large protein macromolecular assemblies, but we also showed that single ions generated from these assemblies provided sufficient image current to induce a measurable charge-related signal. Based on these observations, we and others further optimized the experimental conditions necessary for single ion measurements, which led in 2020 to the introduction of single-molecule Orbitrap-based charge detection mass spectrometry (Orbitrap-based CDMS). The introduction of these single molecule approaches has led to the fruition of various innovative lines of research. For example, tracking the behavior of individual macromolecular ions inside the Orbitrap mass analyzer provides unique, fundamental insights into mechanisms of ion dephasing and demonstrated the (astonishingly high) stability of high mass ions. Such fundamental information will help to further optimize the Orbitrap mass analyzer. As another example, the circumvention of traditional charge state inferencing enables Orbitrap-based CDMS to extract mass information from even extremely heterogeneous proteins and protein assemblies (e.g., glycoprotein assemblies, cargo-containing nanoparticles) via single molecule detection, reaching beyond the capabilities of earlier approaches. We so far demonstrated the power of Orbitrap-based CDMS applied to a variety of fascinating systems, assessing for instance the cargo load of recombinant AAV-based gene delivery vectors, the buildup of immune-complexes involved in complement activation, and quite accurate masses of highly glycosylated proteins, such as the SARS-CoV-2 spike trimer proteins. With such widespread applications, the next objective is to make Orbitrap-based CDMS more mainstream, whereby we still will seek to further advance the boundaries in sensitivity and mass resolving power.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Mass Spectrometry/methods , Proteins/chemistry , Ions , Macromolecular Substances/chemistry
2.
iScience ; 26(4): 106540, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2302196

ABSTRACT

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.

3.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2277387

ABSTRACT

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure formation of antibody:spike complexes we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses. Graphical abstract

4.
ACS Cent Sci ; 7(11): 1863-1873, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1526050

ABSTRACT

Determining how antibodies interact with the spike (S) protein of the SARS-CoV-2 virus is critical for combating COVID-19. Structural studies typically employ simplified, truncated constructs that may not fully recapitulate the behavior of the original complexes. Here, we combine two single particle mass analysis techniques (mass photometry and charge-detection mass spectrometry) to enable the measurement of full IgG binding to the trimeric SARS-CoV-2 S ectodomain. Our experiments reveal that antibodies targeting the S-trimer typically prefer stoichiometries lower than the symmetry-predicted 3:1 binding. We determine that this behavior arises from the interplay of steric clashes and avidity effects that are not reflected in common antibody constructs (i.e., Fabs). Surprisingly, these substoichiometric complexes are fully effective at blocking ACE2 binding despite containing free receptor binding sites. Our results highlight the importance of studying antibody/antigen interactions using complete, multimeric constructs and showcase the utility of single particle mass analyses in unraveling these complex interactions.

SELECTION OF CITATIONS
SEARCH DETAIL